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Z Masáková1, J Patera2 and J Zich3

1 Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering,
Czech Technical University, Trojanova 13, 120 00 Praha 2, Czech Republic
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Abstract
In this paper we describe all the Voronoi and Delone tiles arising in tilings of
point sets �(�) (‘quasicrystals’) built by the standard projection of the root
lattice of type A4 onto a two-dimensional plane spanned by the roots of the
Coxeter group H2 (dihedral group of order 10). The acceptance window �

for �(�) is a disc of any radius 0 < r < ∞. There are 22 distinct sets
V Tj (j = 1, . . . , 22) of Voronoi tiles and eight sets DTk (k = 1, . . . , 8) of
Delone tiles, up to a uniform scaling by a factor τn where τ = 1

2 (1 +
√

5) is
the golden ratio and n ∈ Z.

PACS number: 61.44.Br

1. Introduction

Tessellations, or equivalently tilings, of an Euclidean plane, found as mosaics and other
symmetrical decorations, are subject to relatively restrictive rules, in spite of their apparent
variety. Indeed if, as is often the case, they should be invariant with respect to an infinite
group of plane isometries, there are precisely 17 groups of possible symmetries, discounting
tessellations which are extensions of linear tessellations.

During the last three decades new much richer class of tessellations of an Euclidean plane
was found, sharing many properties with the classical symmetrical ones: the new tessellations
are deterministic, uniformly dense and uniformly discrete, and there are infinitely many of
them, all with abundant symmetry properties. Their most distinctive feature is the complete
lack of translation symmetry.
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This paper is devoted to a specific problem concerning one of the most common families
of the aperiodic tessellations, namely to the description of all the distinct tiles which are
found in these tessellations. The main contribution of this paper is the discovery that
the family containing uncountably many tessellations, admits just 22 sets of tiles, called
here V Tm (m = 1, . . . , 22) and eight of their dual sets DTk (k = 1, . . . , 8). Depending on the
specific conditions of a particular case, each set may appear uniformly scaled by an integer
power of a constant. In all the tessellations of the family, there are 17 different shapes of tiles
in V T sets and four shapes in DT sets, up to a scaling and rotation.

The family of tilings, considered here, arises from a point set �(�) as its Voronoi and
Delone tilings. The point set is the result of a standard projection of a slice of the root lattice
of A4 type onto a two-dimensional subspace oriented in such a way that the irrationality
τ = 1

2 (1 +
√

5) appears in the coordinates of the projected lattice points. The slice of the root
lattice is fixed by the choice of �. Details of the construction of � have been described many
times, most recently in [1].

The present paper and the subsequent one [2] are the first applications of the method,
developed in [1], respectively to tilings of quasicrystals with circular and decagonal acceptance
window of any size. Since the quasicrystal models considered here have the scaling symmetry
with the self-similarity factor τ , the problem of this paper reduces to the description of tiles in
quasicrystals whose acceptance window is a disc of radius within the range (τ−1, 1]. Notation
and most of the conventions used here coincide with those of [1]. For further questions
concerning the method, literature and some motivation, we refer the reader to [1]. Our aim in
writing this paper was to make it self-contained for understanding the results. However, for
following up the procedure to arrive at these results, one needs to consult [1].

2. Basic setup for circular window

Through the text we use the following constants and related identities:

τ = 1
2 (1 +

√
5) τ ′ = 1

2 (1 − √
5) τ + τ ′ = 1 ττ ′ = −1.

� = √
(2 + τ ) �∗ = √

(2 + τ ′) �2 + (�∗)2 = 5 ��∗ = √
5 = τ − τ ′.

There are two two-dimensional real Euclidean spaces involved in the construction of the
(cut and project) point sets, whose Voronoi and Delone tiles we want to list. Denote them by
V1 and V2. They are spanned by the bases {α1, α2} and {α∗

1 , α
∗
2}, respectively, where the bases

are specified by their respective Gram matrices:

((αj |αk)) =
(

2 −τ

−τ 2

)
((α∗

j |α∗
k )) =

(
2 −τ ′

−τ ′ 2

)
.

Crucial for our construction is the star map between V1 and V2. It is defined only for
dense subsets M ⊂ V1 and M∗ ⊂ V2, consisting of points with coordinates of the form a + τb,
where a, b ∈ Q, relative to our chosen bases, i.e. M (resp. M∗) is the integer span of the root
system �2 of the Coxeter group H2. In this paper we encounter only integers a and b. The
star map is given by

M ←→ M∗ : x = (a + τb)α1 + (c + τd)α2 ←→ x∗ = (a + τ ′b)α∗
1 + (c + τ ′d)α∗

2 .

The point sets �(�) of interest to us (‘quasicrystals’) are defined as follows [3]:

�(�) := {x ∈ M | x∗ ∈ �}.
In this paper � is always the disc of radius 0 < r < ∞ which is centred at the origin. Since
the quasicrystals satisfy τ�(�) = �(τ ′�), we can reduce our considerations without loss of
generality to the values of radius r within the range r ∈ (τ−1, 1].
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Table 1. Calculations of Voronoi and Delone tilings for circular acceptance window are divided
into three cases. Auxiliary results for the cases are listed.

Case 1 Case 2 Case 3

Value of r

(
1

τ
,
τ�

4

] (
τ�

4
,
τ

2

] ( τ

2
, 1

]

Value of d1

(
4

τ�
, τ

] (
τ,

2τ

�

] (
2τ

�
,

4

�

]

Value of d2

(
2

τ 2
,
�

2

] (
�

2
, 1

] (
1,

2

τ

]
Tiles in �(I1) 1, τ, τ 2 1/τ, 1, τ 1/τ, 1, τ

Tiles in �(I2) τ, τ 2, τ 3 τ, τ 2, τ 3 1, τ, τ 2

Rc for �(�2)
τ 3

�

τ 3

�

τ 2

�

Value of d
8τ 4

�

8τ 4

�

8τ 3

�

Value of n 5 10 5

|L2n(I1, I2)| 43 75 43

|Ñ | = (8n + 3)2 1849 5625 1849

Let x ∈ �(�). Then the Voronoi cell (or domain or tile) V (x) is defined as

V (x) := {y ∈ V1 | |x − y| � |y − z| for all z ∈ �(�)}.
Thus there is precisely one quasicrystal point in the interior of any Voronoi tile and none on
its boundary.

In order to apply the general method of [1] to the specific case of quasicrystals with
circular acceptance window, we have to make some preliminary considerations. We shall
make some comments on the calculations needed and gather the results in table 1. In order to
avoid repetitions, we refer the reader for details of the method to section 5 of [1]. According
to this method, we first have to compute the sizes of rhombuses, denoted respectively by �1

and �2, which are inscribed and described to the disc �. Let �i be the Cartesian product
Ii × Ii of intervals Ii of length di, i = 1, 2. One can easily verify that

d1 = r

cos π
5 sin π

5

= 4r

�
d2 = r

cos π
5

= 2r

τ
i.e. d2 = d1 sin

π

5
= d1

�

2τ
. (1)

The next problem is to compute the covering radius for �(�) or to find an upper bound
for it. Since �(�2) ⊂ �(�), the covering radius for �(�) is smaller than that for �(�2),
Rc = L/�, where L is the largest tile in �(I2) and depends on the value of r.

• The method (step 1) requires us to compute the value of d which is the side length of the
smallest rhomb oriented along the axes α1, α2 that contains a circle of radius 2Rc. It turns
out that d = 8τRc.

• In step 2 of the method, the value of the covering radius is used to estimate the longest
(measured in the number of tiles) possible section in �(I1) which fits into d/2. The
lengths of the tiles in �(I1) depend on the actual value of r. In order to determine the
right sequence of the tiles, we use some rules for ordering the tiles in a one-dimensional
quasicrystal, e.g., that two shortest tiles are never adjacent, etc. The maximal number of
tiles that can fit into the length d/2 is denoted by n.

• At step 3 of the method we need to find the set of words L2n(I1, I2) introduced in [1]. For
that we use the algorithm presented in [5].
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• According to the above and steps 5 and 6 of the method, we can determine all local
configurations of points in the skeleton (the quasilattice �(�1) with points of the
subquasicrystal �(�2) marked) within the disc of radius 2Rc. The set of configurations
is denoted by Ñ as in [1]. The cardinality of this set can be derived from the number
of one-dimensional sections in Lk(I1, I2), which is 4k + 3, see [5]. We are interested in
k = 2n, i.e. the number of configurations in the skeleton is |Ñ | = (8n + 3)2.

Such calculations lead us to the conclusion that we have to divide the considerations into
three cases, according to the values of r ∈ (τ−1, 1]. For the three cases the tiles in �(I1),�(I2)

and consequently all the studied parameters differ. The summary of the results is found in
table 1.

3. Related algorithms

Suppose that we have already computed the set Ñ of local configurations of the size of the
ball with radius 2Rc from the skeleton.

Recall that the configurations in Ñ contain points ◦ from the dense quasi-lattice �(�1) and
points • belonging also to the sparse quasi-lattice �(�2). Every such skeleton configuration
determines a set N of configurations, or the Voronoi tiles, according to steps 7–10 of the
method. The points ◦ are chosen in every possible way to form a configuration. The
configuration then determines a Voronoi tile of the central point. However, not all points of
the configuration may actually shape the tile. Therefore, the idle points are finally omitted.

If the number of non-decorated points ◦ is k, then the number of configurations to consider
is 2k, although at the end the number of Voronoi tiles in N is much lower. Practically, it turns
out that k may vary up to more than 30, so that it is impossible to enumerate all the 2k

possibilities, since the computation time would exceed months or years. We have, therefore,
developed a faster technique: an algorithm based on tree processing. It is illustrated in
figure 1.

The idea of the algorithm is to construct N and simultaneously Voronoi polygons by a
recursive procedure, in which we avoid considering two different configurations which shape
the same Voronoi tile. The different Voronoi polygons are then saved in a binary tree structure
to get the fastest possible comparison.

Suppose that a configuration from Ñ is given. Denote the dense points ◦ by 1, . . . , k.
The arguments of recursive procedure are the following—a Voronoi polygon V , a dense point
l ∈ {1, . . . , k} and a flag F. If the flag F is set, then the procedure adds the point l to the
neighbours of V . If l does not influence the shape of V , the procedure stops. Otherwise it
adds this new polygon Ṽ to the output list of polygons. At the end it calls itself recursively
twice with the parameters (Ṽ , l + 1, F = set) and (Ṽ , l + 1, F = unset).

The algorithm requires comparison of constructed Voronoi polygons. We used a simple
binary tree, with an order of Voronoi polygons defined as the lexicographic ordering of integer
coordinates of the neighbours determining the Voronoi polygon, considered clockwise. This
was possible since the neighbours belong to the set (Z + Zτ )α1 + (Z + Zτ )α2.

Steps 11–13 of the method allow us to choose among the Voronoi tiles in N those that
appear in the Voronoi tiling for the quasicrystal with given acceptance window. First we need
to check whether the star image of the configuration fits into the acceptance window, i.e. if
q1, . . . , qm are the neighbours of the tile V , we check whether the set

� |V =

 m⋂

j=1

(� − q�
j )


 ∩ � (2)
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Figure 1. Example of a construction of all Voronoi polygons from one configuration from Ñ .

Figure 2. An example of the singular disc acceptance window (on the right) which originates from
the non-singular window (on the left) by reducing the radius of the window. Note that the regions
of division are slightly deformed while grey parts degenerate to the points. In this singularity the
Voronoi tile drawn above disappears because its configuration does not fit into the window.

is empty or not. If � |V = ∅, then the Voronoi polygon V does not appear in the tiling. We
thus have to be able to decide whether an intersection of a finite number of discs with the same
radius is empty or not. For two methods of implementation of this problem see [5].

4. Singular cases

So far, the radius of the acceptance disc was fixed within [τ−1, 1). Suppose now that we want
to consider all radii within the finite range. It turns out that the range [τ−1, 1) gets subdivided
into 11 subintervals and that within each subinterval the sets V T and DT do not change.
Then we speak of generic or non-singular tiling sets V T and DT . The boundary points of the
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Figure 3. The range (1/τ, 1] of the radius of the circular acceptance window r divided by singular
cases. The figure is drawn in proper scale. Between two Voronoi/Delone singular cases the set of
Voronoi/Delone tiles in the tiling does not change.

Table 2. Cases of quasicrystals with circular acceptance windows according to the sets of Voronoi
and Delone tiles. There are 22 classes of quasicrystals V Tm,m = 1, . . . , 22, which have different
Voronoi tiles. In the second column there are a number of Voronoi shapes in the Voronoi tiling. Even
cases are singular and they are represented by quasicrystals with a specific size of window, which
is denoted in the middle column. On the other hand, there are only four classes of quasicrystals
DTm,m = 1, . . . , 4, with circular acceptance window, which have different Delone tiles. In the
fourth column there are a number of Delone shapes.

V T1 11

V T2 10
√

(17 − 9τ )/5
.= 0.698 239 80

V T3 12
V T4 11 (13 − 3τ )/11

.= 0.740 536 18
V T5 12

V T6 11
√

4 − τ/2
.= 0.771 680 96 5 DT1

V T7 13

V T8 10
√

33 − 11τ/5
.= 0.779 785 26

V T9 13
V T10 12 (4 − τ )/3

.= 0.793 988 67
V T11 13

V T12 13 τ/2
.= 0.809 016 99 6 DT2

V T13 15

V T14 13
√

(13 − 6τ )/5
.= 0.811 393 38

V T15 13 6 DT3

V T16 10
√

12 − 7τ
.= 0.820 830 12

V T17 10

V T18 6 τ/�
.= 0.850 650 81 4 DT4

V T19 7 6 DT5

V T20 7
√

τ + 2/2
.= 0.951 056 52 6 DT6

V T21 8 7 DT7

V T22 5 1 5 DT8

subintervals are the singular values of the radius of the disc, when the sets V T and possibly also
DT change. We speak then of singular tiling sets and correspondingly singular tiling of the
quasicrystal. Note that there are fewer singular sets DT than singular sets of V T (see figure 3).

Now we will explain how to detect the singular cases of quasicrystals with circular
acceptance window. The radius of the acceptance window of the singular quasicrystal has
the property that every quasicrystal with larger radius has a different list of Voronoi/Delone
tiles than every quasicrystal with arbitrarily smaller radius. Here we explain how the singular
cases can be determined from the division of acceptance windows to regions corresponding to
different Voronoi tiles.
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Suppose we have a circular acceptance window � with the radius r > 0. For a
better illustration see figure 2. Recall that the acceptance window is divided into regions
corresponding to different Voronoi tiles, �(V ),

�(V ) = � |V \
⋃

{� |Ṽ where |Ṽ | � |V |} (3)

where sets �|V are given by formula (2) as intersections of a few shifted discs with the radius
r. The centres of these discs are images of neighbours of a given Voronoi tile V , when we
suppose that the central point of the Voronoi tile is shifted to the origin. It follows that if the
radius r is increased or decreased, the centres of the disc do not move; only the size of the
discs around them changes. Thus a singular case occurs if and only if boundaries of two or
more discs have exactly one point in common. When a list of Voronoi tiles for the radius r is
compiled, it is easy to compute singular cases close to r. For that one can process all pairs and
consequently all triplets of discs from which the division is composed and compute for which
radius their boundaries intersect at one point. The intersections for singular cases are marked
in figures 4–8.

The singularities are illustrated in figure 2. There are two ways to regard the problem.
Assume that the Voronoi tile V is given by neighbours q1, . . . , qm. Decreasing the radius of
the acceptance window may cause such a configuration to no longer fit into the disc. Singular
is that value of the radius for which the configuration lies on the boundaries of the disc, as in
figure 2. It means that for radii >r the Voronoi tile appears, while for radii <r it does not.

The second way to see a singularity is to observe what happens when we increase the
radius of the acceptance window: assume that a Voronoi tile V is given by neighbours
q1, . . . , qm. When we increase the radius of the disc, it may happen that some new points fit
into the acceptance window that influence the shape of the Voronoi tile. Every configuration
q1, . . . , qm occurs with these additional points and therefore the tile V does not appear in the
tiling for larger radius.

From this it is obvious what role is played by the boundary of the acceptance window.
Clearly, the important fact is whether � is open or not. It may happen that a tile with zero
density appears in the tiling corresponding to the singular value r of the radius. Since the
intersection of the disc boundary with the Z[τ ]-lattice M is always finite or empty [4], tiles
with zero density appear finitely many times in the tiling. Note also that the position of the
acceptance window influences whether the intersection of the boundary with M is empty or
not.

Using the calculations of intersections of circles as described above we have discovered
that there are 11 singular and 11 non-singular cases according to the Voronoi tiling. The precise
values of the corresponding radii are summarized in table 2. Note that there are singular cases
which are relatively far and on the other hand some of them are really very close (e.g., V T12

and V T14). Simultaneously non-singular case V T13 between these two closest singular cases
contains the largest number of Voronoi tiles. For these interesting properties a part of its
Voronoi and Delone tiling is drawn in figure 9.

The singular cases for Delone tiles were computed analogously. We have to draw the
division of the acceptance window according to the different fans of Delone tiles meeting
in one central point. More detailed instructions can be found in [1, 5]. The division of the
acceptance window according to a fan of Delone tiles is a subdivision of the division according
to different Voronoi tiles. Usually, one Delone tile may be present in several fans corresponding
to different regions. Therefore, the problem of determining the values of radii for which some
Delone tiles appear/disappear in the Delone tiling was slightly more complicated than that
for Voronoi tiling. The method was however the same. It turns out that singularities for
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Figure 4. Division of circular acceptance windows (cases V T1–V T5). Each region in the
acceptance window corresponds to a different Voronoi tile. The numbers which denote these
regions are numbers of Voronoi tiles from figure 12.
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Figure 5. Division of circular acceptance windows (cases V T6–V T10). Each region in the
acceptance window corresponds to a different Voronoi tile. The numbers which denote these
regions are the numbers of Voronoi tiles from figure 12.



1904 Z Masáková et al

Figure 6. Division of circular acceptance windows (cases V T11–V T13). Each region in the
acceptance window corresponds to a different Voronoi tile. The numbers which denote these
regions are the numbers of Voronoi tiles from figure 12.
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Figure 7. Division of circular acceptance windows (cases V T14–V T17). Each region in the
acceptance window corresponds to a different Voronoi tile. The numbers which denote these
regions are the numbers of Voronoi tiles from figure 12.
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Figure 8. Division of circular acceptance windows (cases V T18–V T22). Each region in the
acceptance window corresponds to a different Voronoi tile. The numbers which denote these
regions are the numbers of Voronoi tiles from figure 12.
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Figure 9. Voronoi and Delone tilings of a quasicrystal with the circular acceptance window for
cases V T13 and DT3. The radius of the acceptance window is r = τ/2 + 1/τ 13. This is a non-
singular case which has the largest number of Voronoi tiles. But unfortunately 11 have very high
density.

Delone tiles form only a subset of singular cases of V T . The complete list of the Delone
singular cases DT is presented in table 2.

5. Symmetries

In this section we discuss symmetries of quasicrystals with circular acceptance window that
reflect the symmetries of the Voronoi and Delone tiles. If a symmetry is observed in the
division of the acceptance window, and consequently in the tiling, the lattice M = Z�2 must
also be invariant under this symmetry. Obviously a disc window centred at the origin and the
lattice Z�2 have the following symmetries:

(1) rotations around the angle 2π/10,
(2) reflections along the roots from �2,
(3) reflections along the lines passing thorough the origin and perpendicular to the roots

from �2.
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Figure 10. Voronoi and Delone tilings of a quasicrystal with the circular acceptance window
for cases V T19 and DT5. The radius of the acceptance window is r = τ/� + 1/τ 6. This is a
non-singular case.

Note that all these mappings can be generated only by two reflections: one along the
horizontal line and second by the line rotated by the angle 2π/20. These two reflections
generate the well-known dihedral group of order 20, i.e. D20. This group contains 20 elements,
ten of them are reflections, the other ten are rotations.

Generally, if the acceptance window is symmetric with respect to a reflection from D20,
the quasicrystal is symmetric with respect to another reflection from D20; the same holds for
rotational symmetries from D20. Therefore, each Voronoi and also Delone tile may appear in
20 orientations in the quasicrystal (10 rotations and 10 reflections). However, certain tiles are
invariant under some of these transformations, reflections in particular. Hence some of the 20
orientations for these tiles coincide.

In the case of Voronoi tiling the symmetric tiles can be easily determined by observing
the positions of corresponding regions in the acceptance window. Denote by R1 a mirror of
the first generator of the group D20—the horizontal line—and denote by R2 a mirror of the
second generator of D20—the horizontal line rotated by the angle π/10 around the origin.

If a region of a given Voronoi tile lies between these two mirrors, then obviously it has
20 copies in the acceptance window. Examples can be found in figures 4–8, e.g., tiles 12, 14
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Figure 11. Voronoi and Delone tilings of a quasicrystal with a circular acceptance window for
cases V T22 and DT8. This is the ‘mostly’ singular case where r = 1.

and 16, which are not invariant under any of the transformations from D20. Otherwise if the
region lies either on R1 or R2 there are ten copies of the corresponding tile. An exception is
the tile 10—the regular decagon—invariant under all transformations from D20.

The situation for Delone tiles is slightly more complicated because we cannot derive this
information from the division of the acceptance window. There are only four shapes of Delone
tiles, see figure 13. Applying D20 to the pentagon we obtain only two different orientations.
Analogously, applying D20 to the rest of the tiles we obtain ten orientations of each. It is not
difficult to check the occurrence of these tiles in the Delone tiling of quasicrystals.

6. Summary of the results

In general, the circular acceptance window case is the most complicated among the three we
consider [1, 2]. There is a larger number of Voronoi and Delone sets of tiles we have to
list, and comparable sets typically contain larger number of tiles than those in the case of an
equilateral decagon or rhombus.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

V T1 • • • • • • • • • • •
V T2 • • • • • • • • • •
V T3 • • • • • • • • • • •
V T4 • • • • • • • • • •
V T5 • • • • • • • • • • •
V T6 • • • • • • • • • •
V T7 • • • • • • • • • • •
V T8 • • • • • • • • •
V T9 • • • • • • • • • • •
V T10 • • • • • • • • • •
V T11 • • • • • • • • • • •
V T12 • • • • • • • • • • •
V T13 • • • • • • • • • • • • •
V T14 • • • • • • • • • • •
V T15 • • • • • • • • • • •
V T16 • • • • • • • • •
V T17 • • • • • • • • •
V T18 • • • • • •
V T19 • • • • • • •
V T20 • • • • • • •
V T21 • • • • • • • • •
V T22 • • • • •

Figure 12. The 22 tiles shown at the top comprise the complete set of Voronoi tiles encountered in
all quasicrystals with circular window. Shapes and relative sizes of the tiles are maintained. Also
shown are the points of the quasicrystal which define the tile. For a fixed radius r of the circular
acceptance window, only a subset V Tm of tiles is present in the Voronoi tiling. The entries at the
intersection of a column k and a row V Tm indicate the presence of the tile number k in the set V Tm.
With each tile there are at most 20 differently oriented copies in tiling according to dihedral group
H20. But tiles which are symmetric themselves to some subgroup appear in smaller numbers. For
more details see the text.

The Voronoi and Delone tiling for quasicrystals with circular acceptance window
having any radius r within the range (τ−1, 1] can be identified with a Voronoi tiling set
V Tj , j = 1, . . . , 22, and a Delone tiling set DTk, k = 1, . . . , 8 (see figures 12 and 13). The
sets V Tj and DTk with even indices j and k are the singular sets. They occur in the tiling of
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1 2 3 4 5 6 7 8 9

DT1 • • • • •
DT2 • • • • • •
DT3 • • • • • •
DT4 • • • •
DT5 • • • • • •
DT6 • • • • • •
DT7 • • • • • • •
DT8 • • • • •

Figure 13. The nine tiles shown in the top table comprise the complete set of Delone tiles
encountered in all quasicrystals with circular window. Shapes and relative sizes of the tiles are
maintained. For a radius r of the circular acceptance window, only a subset DTm of tiles is present
in the Voronoi tiling. The entries at the intersection of a column k and a row DTm indicate the
presence of the tile number k in the set DTm. With each tile there are at most 20 differently oriented
copies in tiling according to dihedral group H20. But tiles which are symmetric themselves to
some subgroup appear in smaller numbers. For more details see the text.

quasicrystals with a precise value of the radius of its acceptance window (disc). The values are
listed in table 2, and their relative position is shown graphically in figure 3 by the black dots
in the interval (τ−1, 1]. The radii between two adjacent dots refer to the acceptance windows
of quasicrystals with the (odd-numbered) non-singular tiling sets V Tj and DTk .

A quasicrystal has singular tiling sets V Tj and DTk , if an arbitrary small change in the
size of its acceptance window (radius of the disc) leads to distinct tiling sets V Tj+1, V Tj−1

and DTk+1,DTk−1. Otherwise, the tiling set is non-singular.
The neighbours of a quasicrystal point x ∈ �(�) are those points in �(�) which influence

the shape of the Voronoi tile of x. A numbered list of distinct Voronoi tiles together with the
neighbours of the central point is shown in scale in the upper part of figure 12. Twenty
orientations of the tiles are possible, due to the D20 symmetry of the quasicrystal �(�).
A tiling set V Tj consists of the tiles marked by a black dot in the lower part of figure 12.
Analogous results concerning the set of Delone tiles, and the subsets DTk are found in
figure 13.

Figures 4–8 show the divisions of the circular acceptance window into regions containing
those points x∗ ∈ � for which the Voronoi cell V (x) has the same shape and orientation.
Each case V Tj is illustrated with the disc of the acceptance window and a segment of the disc.
The numbers of regions coincide with the numbers of corresponding tiles in figure 12. The
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figures illustrating the sets V Tj with odd index j represent a typical division of the acceptance
window. Continuous change of the radius of the disc would continuously change the regions
but the set of tiles remains the same, until a singular value of the radius is reached. In that
case the tiling set becomes V Tj−1 (for decreasing r) or V Tj+1 (for increasing r).

All the tiles in our list have the density of occurrence within their tiling >0. Equivalently,
the area corresponding to such tiles in the acceptance window is >0. Under certain
circumstances special tiles whose density is 0 may appear in a tiling. As was explained
in section 4, it depends on the intersection of the boundary of the acceptance window with the
Z[τ ]-lattice M and the fact whether � is a closed or open region. The situation for the case of
a circular acceptance window is not complicated, since the intersection of the boundary with
M is at most a finite set. When this is not the case (for example, decagonal acceptance window
[2]), a detailed analysis of occurrences of tiles with zero density depending on the boundary
would be needed.
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GA ČR 201/01/0130, NSERC Canada and FCAR of Québec.
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